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Hedge Fund Returns 
and Factor Models: 
A Cross-Sectional Approach*

I. Introduction ■

In the last two decades, interest in hedge funds from 
both academics and investors has grown dramatically. 
These funds are typically organized as private investment 
vehicles for wealthy individuals and institutional investors. 
Since they do not have to disclose their activities publicly, 
little is known about the risk in hedge fund strategies. 
The lack of transparency and the fear for style drift have 
raised the question whether it is possible to identify and 
estimate the risk factors driving hedge fund returns. Factor 
models are employed to capture their main characteristics 
and thus identify the risk exposures.

These models are initially developed to explain common 
risk affecting equity returns. They are a natural extension 
of the one-factor CAPM [Sharpe (1964), Lintner (1965) 
and Black (1972)] and use a set of observed variables, such 
as market indexes and economic indicators, as proxies 
for common risk factors. The growth of the hedge fund 
industry has reoriented the asset pricing efforts toward 
alternative returns offered by hedge funds. For example, 
Fung and Hsieh (2004) showed that equity-oriented 
hedge fund indexes have two major exposures: the equity 
market as a whole, and the spread between small cap and 
large cap stocks1.

An extensive literature has documented that hedge fund 
returns differ from those of the traditional assets. Mutual 
funds returns have high and positive correlation with 
asset class returns, which suggests that they behave as a 
«buy and hold» strategy. Hedge fund returns seem to have 
low and sometimes negative correlation with traditional 
asset class returns2. This suggests that they behave as if 
deploying a dynamic strategy including short sells and 
leverage. Nonlinear payoffs and time-varying exposures 
to risk factors are some resulting stylized facts [see Fung 
and Hsieh (1997a, 1997b, 2001, 2002a), Mitchell and Pul-

vino (2001), and Agarwal and Naik (2001, 2004) among 
others]. It follows that to analyze hedge fund returns, one 
has to take into account that their risk exposures are non-
linear and likely to change very frequently. For example, 
Agarwal and Naik (2004) introduce option-based factors 
to capture nonlinear payoffs of hedge fund strategies 
and show that left-tail risk is a priced factor. Fung and 
Hsieh (1997a) focus on the time-varying risk exposures 
of hedge funds and show that the Trend Follower index 
returns are positively correlated with the stock market in 
situations of bullish markets and negatively correlated in 
bear markets. Hasanhobvic and Lo (2007) use observed 
factors, such as the S&P 500 index, the USD return index, 
the Bond Index, etc., to model the returns of individual 
hedge funds3. They estimate the risk exposures using a 
24-month rolling window. This methodology has one 
main drawback: the factor model specifi cation is deter-
mined in advance and is kept unchanged through the 
entire sample period4. This factor selection mechanism5 
does not take into account the time-varying risk profi le 
of hedge fund returns. Therefore, hedge fund analysis 
should consider that, for different rolling periods, a 
given investment strategy may not be exposed to the 
same risk factors.

The factor selection problem is not new in the literature. 
The main issue is related to the delicate balance between 
using too many or too few factors. Specifi cally, adding too 
many factors lowers the regressors effi ciency. Working 
with too few factors also has an important hidden cost, 
the model risk. This raises the question whether it is 
possible to build a factor selection methodology allowing 
to consider only the appropriate factors. In this paper, 
we develop a dynamic factor-based approach to explain 
hedge fund returns. First, we focus on an approximate 
factor model framework to deal with the factor selection 
issue. Instead of determining in advance which factors 
to include in the analysis, we use asymptotic develop-
ments of Bai and Ng (2002, 2006) to select the relevant 
factors. We estimate the risk dimension, i.e. the optimal 
number of latent factors, using individual hedge fund 
returns. Then, we asses the economic interpretation 
of these factors by matching them with the observed 
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variables. We thus identify which economic forces drive 
hedge fund returns. Second, we take into account the 
instability of asset risk profi le by using rolling period 
analysis to estimate time-varying hedge fund risk expo-
sures. Individual hedge fund returns are used instead 
of index returns. This choice allows us to go further in 
the comprehension of the latent factor structure. The 
information on the common behavior of fund returns is 
fi ltered not only from the past historical data (time-se-
ries dimension), but also from the cross-section of fund 
returns. The asymptotic tests we perform hereafter are 
consistent for large cross-section and moderately large 
time-series dimension. This data confi guration is clearly 
more in line with the dynamic factor selection objective 
we aim at. Moreover, Chan and al. (2005) point out that 
a disaggregated approach may yield additional insights 
not apparent from index-based risk models.

Finally, we use the HFR database to test our approach 
on a set of individual equity hedge funds. One possible 
application of risk factor models is hedge fund replication. 
This is a challenge that has naturally appeared in response 
to drawbacks inherent to these funds such as opacity, lack 
of liquidity and high incentive fees. Repliquants generate 
hedge-fund-like returns using more liquid assets such 
as market indexes. This allows to construct benchmarks 
and then get a better evaluation of alpha generation for a 
given fund. We use hedge fund replication as a criterion 
for assessing the quality of the dynamic factor-based 
approach developed herein, as well as the benefi ts of 
dynamic factor selection mechanism. We fi nd that the 
hedge fund clone index constructed by our methodo-
logy outperforms the «naive» clone index constructed 
by a methodology consisting of a static and ad hoc factor 
selection, as in Hasanhobvic and Lo (2007).

The paper is organized as follows. In section II, we pro-
pose a statistic model for large panel data and describe 
how recent asymptotic tests can be used to assess the 
common risk structure of asset returns. Section III deals 
with the economic interpretation of the latent factors. 
Section IV describes our dynamic factor-based approach 
to analyze hedge fund returns and discuss the empirical 
results. Section V concludes.

II. Determining the number  ■
of latent factors

In this section, we focus on the approximate factor 
model framework and use Bai and Ng (2002) asymptotic 
tests to estimate the risk dimension.

II.1. AN APPROXIMATE FACTOR MODEL 
FOR HEDGE FUND RETURNS

When dealing with large panel data, the arbitrage pricing 
theory (APT) of Ross (1976) assumes that a small number 
of factors can be used to explain a large number of asset 
returns. Let 

 
X

it
 be the observed return for fund  i  at 

time  t , for i =1,...,N  and t =1,...,T . We consider 
the following model with  r  common factors: 

X
it

= λ
i
' F

t
+ e

it
,  (1)

where F
t

 is a r × 1  vector of common factors, 
 
λ

i
 is a 

r × 1  vector of factor loadings for the fund  i , and e
it

 
is the  i th element of the  t th column of the idiosyncra-
tic component matrix. λ

i
' F

t
 represents the common 

component of X
it

. The idiosyncratic components are 
supposed to have zero mean.

We place our analysis in an approximate factor model 
framework in the sense of Bai and Ng (2002) which is 
more realistic in hedge fund world, since it allows for 
weak time and cross-section dependence and heteros-
cedasticity in the idiosyncratic components. The factors, 
their loadings, as well as the idiosyncratic errors are 
not observable and have to be estimated. Although it 
seems appealing to assume one factor, there is growing 
evidence against the adequacy of a single factor model 
in explaining hedge fund returns. For example, Fung 
and Hsieh (1997a, 1997b) show that hedge fund risk 
exposures are multidimensional and highly dynamic. 
Thus, instead of restricting the analysis by fi xing r =1 ,
we propose a procedure to determine the appropriate 
number of factors6.

Determining the number of factors in approximate 
factor models is an important issue when dealing with 
large panel data in both cross-sectional (N )  and time-
series (T )  dimension. In classical factor analysis (see 
Anderson (1984)),  N  is assumed fi xed, the factors are 
independent of errors 

 
e

t
 and the covariance matrix of 

the idiosyncratic components Σ  is diagonal. Under these 
assumptions, a root-T  consistent and asymptotically 
normal estimator of Σ , as measured by the sample cova-
riance matrix, can be obtained. The essential of classical 
factor analysis applies to the case of large N  but fi xed 
T since the N × N  problem can be reformulated as a 
T ×T  problem, as discussed by Connor and Korajczyk 
(1993) among others.

Inference on r  under classical assumptions is based 
on the eigenvalues of the estimator of  Σ . Indeed, a cha-
racteristic of a panel of data generated from r  factors is 
that the fi rst r  largest eigenvalues of the N × N  cova-
riance matrix of 

 
X

t
 diverge as N  increases to infi nity 

but the (r + 1) th eigenvalue is bounded (see for example 

Chamberlain and Rothschild (1983)). However, it can 

be shown that all nonzero eigenvalues of Σμ  (not just 

the fi rst  r ) increase with  N , and a test based on the 
sample eigenvalues is thus not viable. A likelihood ratio 
test can also, in theory, be used to estimate the number 
of factors under the assumption that e

it
 is normally 

distributed. But as discussed by Dhrymes et al. (1984), 
the number of statistically signifi cant factors estimated 
by the likelihood test ratio increases with N  even if the 
true number of factors is fi xed. Connor and Korajczyk 
(1993) develop a test for the number of factors in the 
asset returns, which is derived under sequential limit 
assumptions, i.e.  N  converges to infi nity with a fi xed  T ,
then T  converges to infi nity. In addition, covariance sta-
tionarity and homoscedasticity are crucial for the validity 
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of their test. As discussed by Bai and Ng (2002), the fun-
damental problem in classical analysis is that the theory 
does not apply when both N  and T  go to infi nity. This 
is because consistent estimation of Σ  (whether it is an 
N × N  or T ×T  matrix) is not a well defi ned problem7.
To address this issue, Bai and Ng (2002) develop an asymp-

totic theory for factor models with large panel data (when N , 
T → ∞ ). Their analysis is not standard since: i)  the 
sample size in both the cross-section and time-series 
dimension have to be taken into account; ii)  the factors 
are not observed. Based on an approximate factor model 
framework, they fi rst establish the convergence rate for the 
factor estimates that will allow for consistent estimation 
of  r . They then propose some panel criteria and show 
that the number of factors can consistently be estimated. 
Inference on  r  is set up as a model selection problem and 
the proposed criteria depend on the trade-off between good 
fi t and parsimony. The penalty for overfi tting is a function 
of both N  and T  in order to consistently estimate the 
number of factors. Consequently, the usual  AIC  and 

 BIC  criteria, which are functions of  N  or T  alone, do 
not work when both dimensions of the panel are large. 
In addition, their theory holds under heteroscedasticity 
and weak cross-section and serial dependance in the idio-
syncratic components. These additional assumptions are 
reported in the appendix A. Note that Bai and Ng (2002) 
approximate factor structure is more general than that of 
Chamberlain and Rothschild (1983), which focuses only 
on the cross-section behavior of the data by allowing for 
weak cross-section dependence.

II.2. ASYMPTOTIC TESTS 
FOR ESTIMATING THE NUMBER 
OF LATENT FACTORS
Equation (1) can be written in a more general way as: 

X = F ʹΛ + e,  (2)

where X  is the  T × N  matrix of individual hedge 
fund returns,  e  is the  T  x  N  matrix of idiosyncratic 
components, Λ  is the N × r  matrix of factor loadings, 
and  F  is the  T × r  matrix of common factors.

We use the asymptotic principal component method 
to estimate the factors and their loadings. This method 
minimizes the following objective function: 

  

V (k)=

Λ,Fk
min(NT )−1

i=1

N

∑
t=1

T

∑(X
it
− λ

i
kF

t
k )2,  (3)

subject to the normalization of either (Λk ʹ) Λk / N = I
k

 

or (F k ʹ) F k /T = I
k

. The superscript in λ
i
k  and F

t
k  

signifi es the allowance of  k  factors in the estimation, with 

k = min(T ,N ) . There are two possible solutions.

i)  Concentrating out F k  and using the normalization 

  
Λ ʹk Λk / N = I

k
, the estimated factor loading matrix 

 Λ
k  is  N  times the eigenvectors corresponding to 

the k  largest eigenvalues of the N × N  covariance 

matrix ʹX X .  Given Λk , F k = XΛk / N   repre-
sents the corresponding matrix of the estimated com-
mon factors.

ii)  The second is given by ( %F k , %Λk ), where %F k  repre-
sents T  times the eigenvectors corresponding to the 
k  largest eigenvalues of the T ×T  covariance matrix 
X ʹX . The normalization that (F k ʹ) F k /T = I

k
 

implies that    
%Λ ʹk =( %F k ʹ) X /T  is the corresponding 

matrix of the estimated common factors.

The fi rst solution is less costly when T > N , while 

the second is more appropriate when T < N .  As it 

will be discussed later, our dynamic approach uses 

T -month rolling period estimations, with T  smal-

ler than the number of individual hedge funds N . 

We thus retain the second set of principal component 

calculations to estimate the factors and their loadings.
Bai and Ng (2002) propose some criteria to estimate the num-

ber of factors  r . Let  F
k  be a matrix of k  factors and 

  

V (k,F k )=min
1

NT
i=1

N

t=1

T

(X
it i

k F
t
k )2, (4)

be the sum of squared residuals when  k  factors are 

estimated. Then a loss function 
  V (k,F k ) + kg(N ,T ) ,

with 
  g(N ,T )  being the penalty for overfi tting, can be 

used to determine k . The authors propose some penalty 

functions g(N ,T )  such as the following criteria of 

form IC(k)=V (k,F k ) + kg(N ,T )  can consistently 
estimate r : 

IC
1
(k)=ln(V (k, %F k ))+ k(

N +T

NT
)ln(

NT

N +T
),

IC
2
(k)=ln(V (k, %F k ))+ k(

N +T

NT
)lnC

NT
2 ,

 (5)

IC
3
(k)=ln(V (k, %F k ))+ k(

lnC
NT
2

C
NT
2

).

In these equations, C
NT

= min( N , T ) , %F  

is the matrix of estimated common factors and 

V (k,F k )= N 1

i=1

N

i
2 , 

i
2 = e

i
e

i
/T . The 

IC
1 , IC

2
 and IC

3
 criteria are called Information Cri-

teria8.
We use Monte Carlo simulations to assess the fi nite 

sample properties of IC  criteria relative to our data 
confi guration. The simulation procedure is described in 
the Appendix B . The results reported in Table 3 show 
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that 
  
IC

2  outperform the other criteria in inferring the 
appropriate number of factors. Moreover, a small degree 
of correlation in the idiosyncratic errors does not affect 
their fi nite sample properties.

III. Economic  ■
interpretation 
of risk exposures

Based on the Bai and Ng (2006) framework, we discuss 
how to match the latent factors to observed variables. 
This step is essential to identify which economic forces 
drive hedge fund returns.

III.1. MATCHING OBSERVED 
VARIABLES TO LATENT 
COMMON FACTORS
The factors represent the common shocks that drive 

the covariation of asset returns. These common factors 
are directly determined by the covariance structure of the 
data9. It is therefore intuitive to replace the unobserved 
factors with statistically estimated ones. For example, 
Lehman and Modest (1988) use factor analysis, while 
Connor and Korajzcyk (1986, 1988) adopt the method of 
principal components. However, these statistic factors 
do not have direct economic interpretation.

Another possibility is to select a set of observed variables 
as proxies of the unobserved latent factors. For example, 
in the CAPM analysis equity index returns are used as 
proxies of the unobserved market portfolio returns. Chen 
et al. (1986) fi nd that the factors in the APT are related 
to macroeconomic variables. Fama and French (1993) 
propose three well-known observed factors: the market 
excess return (MKT), the small minus big (SMB), and the 
high minus low (HML) factors. Later on, Carhart (1997) 
extends the three factor model of Fama and French (1993) 
by adding a forth factor in order to take into account risk 
related to return persistence. Agarwal and Naik (2004) 
use option-based factors to account for nonlinear returns 
generated by dynamic investment strategies employed 
by hedge funds.

There is a certain appeal in associating the latent factors 
with the observed variables in order to facilitate the eco-
nomic interpretation of the common variations of asset 
returns. However, as pointed out by Shanken (1992), 
estimation of betas using proxy factors is relevant only 
if the fundamental factors are spanned by the observed 
variables. Such a condition is breached even if a pure 
measurement error is added to a perfect proxy.

Suppose we observe an   m × 1  vector of economic 
variables, denoted G

t
. We want to fi gure out whether 

its elements are generated by (or are linear combinations 
of ) the r latent factors F

t
. As discussed in Bai and Ng 

(2006), considering G
jt

 to be an exact linear combina-

tion of the latent factors is a rather strong assumption. 
An observed series might explain the variations of the 
latent factors very closely, and yet is not an exact factor 
in a mathematical sense. This is due, for example, to 

measurement errors and time aggregation (see, for exam-
ple, Breeden et al. (1989)). For that reason, we consider 
an approximate relation between the observed and the 
latent factors: 

G
jt

= ʹδ F
t
+ ε

jt
,  (6)

where F
t

 is a r × 1  vector of latent factors and 

   
ε

jt
∼ N (0,σε

2( j )).

Bai and Ng (2006) show that the space spanned by the 
latent factors can consistently be estimated when the simple 
size is large in both the cross-section and the time series 
dimensions10. They develop some criteria to match the 
observed variables with the estimated latent factors.

III.2. ASYMPTOTIC TESTS
Suppose that we observe G

jt
, j =1,...,m  and 

t =1,...,T . We want to test if it is generated by (or is a 
linear combination of ) r  latent factors. The latent fac-
tors F  and their number  r  are not observed and have 
to be estimated.

We denote Gμ jt = γμj

'
F∞t , where   

�F
t  is the principal 

component estimation11  of  F , γμ j  is obtained by 

least squares from a regression of 
 
G

jt  on 
�F
t , and 

  
ε jt =G

jt
−G jt . The residuals   ε

μ
jt  are referred as a 

measurement error, even though it might be due to sys-

tematic differences between F
t

 and G
jt

.

We consider two statistics proposed by Bai and Ng 

(2006) to compare the observed variables with the esti-

mated factors F
∞

.

NS( j )=
varμ ( εμ( j ))

varμ (Gμ( j ))
,  (7)

R2( j )=
varμ (Gμ( j ))

varμ (G( j ))
,  (8)

where a consistent estimate of varμ (Gμ jt )  is given by: 

   

1

N
γμ j

'
V
∞ −1

Γ∞ t V
∞ −1

γμ j .  (9)

In this equation,   V
∞

 is a r∞  x r∞  diagonal matrix consis-

ting of the   r∞  largest eigenvalues of sample covariance 

matrix XX ' / NT, and   Γ
∞

t  is a consistent estimate of 

  
Γ

t
= N →∞lim

1

N i=1

N∑ j=1

N∑ E(λ
i
λ

j
' e

it
e

jt
). To allow 

for heteroskedastic errors 
 
e

it ,   Γ
∞

t  is given as follows: 

Γ∞ t =
1

N
i=1

N

∑ e∞it

2

λ∞i λ∞i
'
,

 (10)

where   λ
∞

i  and   e
∞

it  are respectively the factor loadings 
and the idiosyncratic errors resulting from the principal 
component computations as described in section 2.2.
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The statistics given in equations (7) and (8) consider 
one observed variable G

j
 at a time. The NS( j )  statis-

tic represents a noise-to-signal ratio. If G
j

 is an exact 

factor, i.e. G
jt

= δ'F
t

 the population value of NS( j )  

is zero. Concerning R2( j ) , the higher this statistic, 
the higher the adequacy between the observed and the 
latent factors.

Finally, we use Monte Carlo simulations to assess the 
fi nite sample properties of the proposed criteria, as well 
as their critical values. Simulation procedure is described 
in the Appendix C . The results reported in Table 5 show 
that both criteria help identify the appropriate observed 
factors. In the following section we show how we use 
these criteria to select the relevant observed factors and 
apply this factor selection procedure to a set of individual 
equity hedge funds.

IV. Empirical applications ■

In this section, we develop a dynamic factor-based 
approach to analyze equity hedge fund returns. Subsec-
tion 1 describes the data. In subsection 2, we estimate 
the risk dimension. Subsection 3 provides an economic 
interpretation of the covariance structure of fund returns, 
while subsection 4 presents the dynamic hedge fund return 
analysis and discusses the empirical results.

IV.1. THE DATA
We use in all this section the HFR database providing 

returns of individual hedge funds. This database contains 
only the funds that are still “alive”, i.e. active as of the end 
of our sample period, December 2005. We acknowledge 
that the database suffers from the survivorship bias. 
However, the importance of such a bias for our applica-
tion is tempered by the fact that many successful funds 
leave the sample as well as the poor performers, reducing 
the upward bias in expected returns. In particular, Fung 
and Hsieh (2000) estimate the magnitude of survivorship 
bias to be  3%  per year, and Liang’s (2000) estimate is 
2.24%  per year. In addition, the focus of our study is on 
the relative performance of our dynamic approach versus 
a naive one which consists in including in the analysis 
all the available observed factors and keeping this set 
unchanged. It follows that, any survivorship bias should 
impact both approaches in the same way, leaving their 
relative performances unaffected. HFR database classifi es 
funds into one of 17 different investment styles, listed in 
Table 6 in the Appendix D .

We limit our analysis to the individual funds of the equity 
hedge strategy for two reasons. First, this strategy invol-
ves quite homogenous equity-oriented funds investing 
on both the long and the short sides of the market. Thus, 
we expect the equity hedge funds to be more sensible to 
equity-based risk factors. Second, the number of funds 

 N  with full set of data for our studying period (January 
1997 to December 2005) is large, which will improve the 
fi nite sample properties of our tests. We drop funds that: 
i) do not report net-of-fee returns; ii) report returns in cur-

rencies other than the U.S. dollar; iii) report returns less 
frequently than monthly; iv) have less than 10  Million US 
dollars of assets under management (AUM). These fi lters 
yield a fi nal sample of 680  equity hedge funds.

IV.2. ESTIMATING THE NUMBER 
OF LATENT FACTORS THAT DRIVE 
EQUITY HEDGE FUND RETURNS
As discussed in subsection II.2, Monte Carlo simulation 

results (see the Appendix B ) motivate the use of IC
2  

criterion to estimate the number of latent factors. Since 
our study focuses on a dynamic approach, we have to 
choose the minimal length of the rolling window (T )  
ensuring good fi nite sample properties for the estima-
ted parameters.  T  depends on the trade-off between a 
high dynamics of our approach and good fi nite sample 
properties of the Bai and Ng (2002) criteria, in particular 
IC

2 . i) If  T  is too small the convergence is not achieved 
and the selected criteria will not yield good estimates of 
the number of latent factors. ii) If  T  is too large, our 
approach will lose its dynamic character.

The results reported in Table 3 in the Appendix B  show 
that for T = 24  the fi nite sample properties of the six 
criteria are less precise than for   T = 36 . For instance, 
for   T = 24  and r = 3  the  IC  criteria underestimate 
r . For T = 36 , the IC  criteria, and in particular IC2 ,
yield the appropriate number of factors more precisely. We 
use this choice in all the following empirical applications.

The length of the entire sample allows us to form 72  
rolling windows of length 37  months for each one. The 
fi rst rolling window goes from January 1997 to January 
2000, the second from February 1997 to February 2000, 
..., the last one extends from December 2002 to Decem-
ber 2005. We use the fi rst 36  months of each rolling 
window to perform the factor selection procedure and to 
estimate the beta coeffi cients, while the last (the   37th ) 
observation is meant to compare hedge fund returns and 
model predictions12.

Hedge fund returns are standardized previously within 
the 36  fi rst months of each rolling period. Let X  be the 
T  by  N  matrix of the equity hedge fund returns of our 

sample data such that the i th column is the time series 

of fund  i . Let   V
∞

 be a r × r  diagonal matrix consis-

ting of the r  largest eigenvalues of X ʹX / NT . Let 

   F
∞

=(F
∞

1,...,F
∞

T ʹ)  be the principal component esti-

mates of F  under the normalization that 
  

ʹF F

T
= I

r
. 

Then F
∞

 is comprised of the r  eigenvectors (multi-

plied by T ) associated with the  r  largest eigenvalues 

of the matrix X ʹX / NT  in the decreasing order. Let 

Λ=(λ
1
,...,λ

N
ʹ)  be the matrix of factor loadings. The 

principal component estimator of Λ  is    Λ
∞

= ʹX F
∞

/T  

and e∞it = X
it
− λ∞i 'F

∞
t .
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Using the principal component estimates, we calcu-
late the IC2  criterion to estimate the number of latent 
factors. Figure 1 plots, for each rolling window, the 
estimated number of factors, which varies between 2 
and 4. This result seems to be quite realistic for this 
kind of strategy and highlights the CAPM shortco-
mings when explaining hedge fund returns, even for 
an equity-oriented strategy.

Figures 2 and 3 plot the two fi rst estimated latent fac-
tor and the S&P 500 index returns. F1  and   F2  are the 
estimated latent factors corresponding to respectively the 
fi rst and the second largest eigenvalue of the covariance 
matrix of the fund returns for the last rolling period which 
extends from December 2002 to December 2005. Since 
F1  and F2  are estimated using standardized data, we 
renormalize them in order to obtain the same standard 
deviation as for S&P 500 index. S&P 500 index returns 
have been centered by their mean in order to facilitate the 
comparison with the estimated latent factors. The cor-
relation coeffi cients between the two latent factors with 
the S&P 500 index are respectively 

 0,85  and 
 0,27 . The 

fi rst factor behaves closely with the S&P 500 index, while 
the second one is less correlated with the equity market. 
Even if the equity market factor seems to play an impor-
tant role in explaining the cross-section of equity hedge 
fund returns, we are yet unable to identify a signifi cant 
portion of common risk represented by the second latent 
factor if we use a single factor model.

Figure  1: The number of latent factors estimated 
using IC

2  criterion for each rolling period
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Figure  2: The fi rst estimated latent factor F1 and the S&P 500 index 
returns from December 2002 to December 2005
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IV.3. ECONOMIC INTERPRETATION 
OF COMMON LATENT FACTORS
Once the latent factors and their number estimated, we 

implement tests proposed by Bai and Ng (2006) in order 
to match observed risk factors with estimated latent varia-
bles. We considered 2  sets of observed factors.

 i)  The fi rst set, called buy-and-hold risk factors, consists 
of several indexes: 1)  S&P 500: the S&P 500 total return; 
the factors of Fama and French (1993) provided by the 
website of Kenneth French13: 2)  SMB  (small minus 
big): the spread between small and big capitalizations; 

 3)  HML  (high minus low): the spread between high 
and low Book-to-Market stocks; 

 4)  MOM  (momen-
tum): the short-term reversal factor of Carhart14(1994); 
5)  CREDIT : the spread between the Moody’s BAA 
Corporate Bond Index return and the US Government 
10 − year  yield; 6)  BOND : the return on the Moody’s 
Bond Index Corporate AA; 7)  CMDTY : the Goldman 
Sachs Commodity Index (GSCI) total return; 8)   USD : 
the U.S. Dollar Index return.

 ii)  The second set consists of Agarwal and Naik (2004) 
option-based risk factors15 represented by at-the-money 
(ATM) and out-of-the-money (OTM) European call and 
put options on the S&P 500. As discussed by the authors, 
the process of buying an ATM call option on the S&P 
500 index consists of purchasing, on the fi rst trading 
day of each month, an ATM call option on the S&P 500 
that expires in the next month and selling the call option 

bought in the fi rst day of the previous month. This pro-
cedure provides time series of returns on buying an ATM 
call option on the S&P 500. Similar procedures are used 
to get time series of returns for ATM put option, as well 
as OTM call and put options on the S&P 500. The ATM 
call (put) options on the S&P 500 are denoted by SPC

a
 

(
 
SPP

a
), and the OTM call (put) options are denoted by 

SPC
o

 (
 
SPP

o
).

The Agarwal-Naik factors are highly correlated both 
among each other and with the S&P 500 index. To avoid 
some important drawbacks due to factor collinearity, such 
as beta instability, only the option-based factor having 
the lowest value of NS( j )  criterion is included in the 
analysis. For each option-based factor j  ( j =1,2,3,4 ), 
we use the rolling window procedure that will be exposed 
in Subsection IV.4 to calculate 

  NS( j ) , and then we get 

its average value across time NS( j ) . The SPP
a

 is the 

one having the lowest 
  NS( j )  ( NS( j )= 0.35 ). Thus, 

this factor is added to the set of buy-and-hold factors, 
ending up with  9  observed variables to be considered 
in our analysis: m = 9 .

We must choose, among the 9  candidates, the relevant 
observed factors, which are generated by (or are linear 
combinations of ) the estimated latent factors. We turn 
our attention toward the 

  NS( j )  criterion16 to select the 
factors to be included in the model. Monte Carlo simu-
lation results given in Table 5 of Appendix C  suggest 

Figure  3: The second estimated latent factor F2 and the S&P 500 index 
returns from December 2002 to December 2005.
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that the observed variables may have NS( j )  values up 
to 20 . Note that these values are much lower that those 
of the irrelevant factors. We thus set the critical value 
of NS( j )  up to 20 . The observed factors carrying a 
NS( j )  value below 20 , for any given rolling period, 
are included in the analysis17. For instance, focusing on 
the S&P 500, we obtain NS  values close to zero, which 
means that this particular factor plays a signifi cant role 
in explaining equity hedge fund returns. At the end, this 
procedure yields the  72  by  9  selection matrix S  which 
is reported in the Appendix E . Each of the 72  rows of 
this matrix corresponds to a particular rolling period. 
Each element S

jt
 ( j =1,...,m , t =1,...,72 ) equals 

to one if the j th factor satisfi es the restriction imposed 

on the NS( j )  criterion for the t th rolling period, and 
zero otherwise.

The selection matrix S  highlights two important 
results concerning the risk exposures of the equity hedge 
fund returns.

 i)  The S&P 500 index, the Fama-French factors as well 
as the option-based factor SPP

a
 are always relevant.

 ii)  Factors such as  USD  or CMDTY  seem to be 
irrelevant for most cases, while the CREDIT  factor 
becomes relevant only at the beginning of 2000.

IV.4. DYNAMIC LINEAR REGRESSION 
ANALYSIS AND REPLICATION
The two previous subsections help determine the 

risk dimension and identify the observed factors that 
are generated by (or are linear combinations of ) the 
common latent factors estimated from the data. This 
subsection presents the linear regression analysis and 
the hedge fund replication methodology. Hedge fund 
replication is used as a criterion for assessing the qua-
lity of the dynamic factor-based approach developed 
in this paper, as well as the benefi ts of dynamic factor 
selection mechanism. Note that our approach is similar 
to that of Hasanhobvic and Lo (2007). However, while 
they select in advance a set of observed factors and leave 
it unchanged through time, we allow for time-varying 
risk profi le by using the factor selection methodology 
described in Sections 2 and 3.

We use a  37 -month rolling window to estimate risk 
exposures for each fund i  ( i =1,...,N ) and construct 
an out-of-sample replicating portfolio. The first 36 
months allow to i)  estimate the risk dimension h

t
 

(i.e., the number of the selected observed variables for a 
given rolling window); ii)  select the relevant observed 

factors (G1
,...,G

h
t
)  and iii)  perform the linear regres-

sions given below: 

  
R

i,t−k
=β

i,t
(1)G

1,t−k
+ ... + β

i,t

(h
t
)
G

h
t
,t−k

+ ε
i,t−k

,

  
for k =1,...,36, i =1,...,N , (11)

subject to 1=
j=1

h
t

∑β
i,t
( j ), i =1,...,N .

In this equation, R
i,t−k

 denotes the return of fund i  in 

t − k  and β
i,t
( j )  is the fund’s i  exposure to the j th factor. 

Beta coeffi cients are indexed by both i  and t  to refl ect 
the fact that this process is repeated each month (using 
month t − 36  to t − 1  observations) for every fund i . 
To refl ect that the number of observed factors considered 
for a given period is time-varying, 

 
h

t
 is also indexed by 

time. Thus, our approach is more general since account is 
taken not only of time-varying betas, but also of variability 
of hedge fund risk profi le. In addition, selecting only the 
relevant factors eliminates noise due to model overfi tting 
and improves the ability of the regression model to explain 
the observed data. Hasanhobvic and Lo (2007) approach 
can then be seen as a particular case of our procedure, 
when risk profi le is constant in time.

Following Hasanhobvic and Lo (2007), we omit the 
intercept, which forces the least squares algorithm to 
use the factor means to fi t the mean of the fund, which is 
an important feature of replicating hedge fund expected 
returns with factor risk premia. In addition, we constraint 
the sum of beta coeffi cients to be one in order to get a 
portfolio interpretation of the weights.

The estimated regression coeffi cients 
i,t

(h
t
)

 are then 

used as portfolio weights for the 
 
h

t
 observed factors. 

Hence, the replicated returns for the fund  i  are equivalent 

to the fi tted values   Ri,t  of the regression equation: 

  
Ri,t = i,t

(1)

G
1,t

... i,t

(h
t
)

G
h
t
,t
.  (12)

The results obtained using our dynamic approach are 
compared with those of a naive replication strategy, 
which consists in including in the regression analysis 
the whole set of the observed factors. In this case, all the 
elements of the selecting matrix S  are set to one and the 
number of factors h  is constant over time. In this case, 
equations (11) and (12) include all the observed factors 
for each rolling window.

IV.4.1 Empirical results
Applying the replication procedures exposed above, we 

get two equally-weighted replicating portfolios, called 
respectively the dynamic clone index and the naive clone 
index, by averaging the returns of individual fund clones 
at each date. Both replicating portfolios are compared to 
the equally-weighted equity hedge index built using the 
funds of our sample of data. Figure 4 plots the cumula-
tive returns of the two clone indexes, the equally-wei-
ghted equity hedge index, as well as the S&P 500 for the 
whole replication period extending from January 2000 to 
December 2005 (72 months). The main summary statis-
tics and the tracking errors of the replicating portfolios 
are reported in Table 1.

Our dynamic replicating approach outperforms the naive 
one consisting of a static and ad hoc factor selection proce-
dure. This highlights the benefi ts of taking into account 
the time-varying risk profi le when analyzing hedge fund 
returns. In particular, we measure the benefi ts of using 
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our dynamic approach instead of the naive one by the 
reduction of both replication risk (the tracking error), 
as well as the distance between the target and the clone 
average returns. When we look at average returns, the 
dynamic clone index outperforms the naive clone index. 
The annualized average return for the dynamic clone is 
8,06%  with a volatility of 8,95%  against an average 
return of 6,85%  for the naive clone with a volatility of 
9,50% . The dynamic clone index has a lower tracking 
error ( 1,23% ) than the naive clone index ( 1,55% ). 
Thus, the dynamic replicating approach provides the 
best clone of the equity hedge index.

IV.4.2 Additional results
We fi rst study the infl uence of the risk dimension esti-

mating criterion in the quality of replication. The dyna-
mic clone index reported in Figure 4 is obtained using 
Bai and Ng (2002) IC2  criterion. In order to assess the 
benefi ts of using these criterion, we perform the dynamic 
approach using the other criteria (see Subsection II.2). 
The tracking errors are 1,28%  for the IC

1  criterion 
and 

 1,55%  for IC
3

. Although the fi rst alternative gives 
similar performance, it is not the case for the second 
one18, which highlights the importance of a good cri-
terion selection.

Second, we analyze the impact of dynamic factor selection 
procedure on beta turnover. In the previous paragraph, 
we show that accounting for time-variability of hedge 

fund risk profi le improves the quality of hedge fund clone 
index. However, being time-dynamic may have a conse-
quence in terms of beta turnover and other statistical 
properties of the different clones. At each replication date 

 t  ( t =1,...,72 ), we compute the turnover for a given 
individual hedge fund i  (

  i =1,...,N ) as the sum of the 
absolute value of beta variations with respect to the pre-
vious period. Then, we take the average turnover across 
individual funds. Repeating this procedure for each rolling 
period, yields the time evolution of the average turnover, 
which is showed in Figure 5 for dynamic as well as naive 
approaches. The dynamic clone index outperformance as 
compared to the naive clone index is not necessarily due 
to higher fund turnover on average. Although turnover 
values are higher at individual fund level, they cancel each 
other when dealing with the index replication.

Third, we consider the replication quality at the indi-
vidual fund level. Table 2 reports summary statistics 
for individual clones obtained by both dynamic and 
naive replication approach. Columns  2  to  5  give the 
means and the standard deviations of the annualized 
average returns as well as annualized return volatility. 
Columns 6 and  7  report the means and standard devia-
tions of individual clone tracking errors. The results 
show that the dynamic strategy outperforms the naive 
one. The tracking errors of the 3  worst fund clones in 
terms of replication quality are 

 9,81% , 
 10,32%  and 

11,51%  for the dynamic19 approach, and 11,61% ,

Figure 4: Cumulative returns of equally-weighted equity hedge fund 
portfolio, dynamic clone index, naive clone index, and the S&P 500 index 
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13,65%  and 14,35%  for the naive20 approach. On 
the other hand, the three best funds have tracking 
errors close to zero for both approaches. Hence, at 
the individual level, the dynamic clones behave better 
than the naive ones.

Finally, we study the difference between the two approa-
ches in terms of equity exposure. Figure 6 shows the time 
evolution of the average market betas across individual 
funds. At each replication date t  we estimate market 
factor loadings of individual funds and take their average. 
Repeating this procedure 72  times yields the average beta 
time dynamics. The market beta is (on average) more 
stable when using the dynamic approach, which can be 

explained by a lower selection error due to the allowance 
for dynamic risk profi le.

V. Concluding remarks ■

In this paper, we link a new market practice – hedge 
fund replication, to some useful and well known fi nan-
cial theory – factor modelling of equity returns. We get a 
deeper comprehension of the underlying factor structure 
that drives the covariations of equity hedge fund returns, 
using individual fund returns instead of index perfor-
mances. Recent asymptotic theories for factor selection 
ensure good fi nite sample properties for large N  and 

Table 1: Summary statistics for replication results (in percentage) using 
buy-and-hold and option-based factors

Dynamic 
Clone 
Index

Naive 
Clone
Index

Equity 
Hedge
Index

S&P 500
Index

Tracking Errors 1,23 1,55 – –
    

Annualized Return 8,06 6,85 9,50 0,02
Annualized SD 8,95 9,50 7,70 15,23

Figure 5: Time evolution of average turnover across individual funds for 
dynamic and naive replication strategies
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moderately large  T , which is clearly more in line with 
the dynamic factor selection objective we aim at.

This approach allows us to obtain several empirical results. 
First, equity hedge funds belonging to the HFR database 
exhibit a simple  2 - 3  factor structure. While the fi rst factor 
behaves closely with the equity market index, the second one 
is often more diffi cult to understand and illustrates the style 

rotation employed by hedge fund managers. Second, the 
economic interpretation of the risk factors allows building 
replicating portfolios as they are proposed by practitioners. 
Our results highlight the interest of taking into account 
time-varying risk profi le in the replication procedure at 
aggregated level but also at the individual one. The dynamic 
approach outperforms the naive one, which consists of a 
static and ad hoc factor selection procedure. ■

Table 2: Summary statistics for individual funds (in percentage)

Annualized Mean Annualized SD Tracking Error
Individual Funds 11,43 6,90 13,01 7,27
Dynamic Clones 8,77 6,61 9,12 6,53 2,91 1,74
Naive Clones 8,15 6,97 9,96 7,33 3,20 1,98

Figure 6: Time evolution of average market betas across individual funds 
for dynamic and naive procedures
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To allow for some cross and serial correlation as well as heteroskedasticity in the idiosyncratic components, Bai and Ng (2002) 
make the following set of assumptions:

Assumptions
Time and cross-section dependence and heteroskedasticity: There exists a positive constant M <∞ , such that for all N  and 
T ,

1. 
  
E(e

it
)=0 , E | e

it
|8≤ M ;

2. E(e
s
' e

t
' / N )= E(N −1

i=1

N∑ e
is
e

it
)= γ

N
(s,t) , | γ

N
(s,s)|≤ M  for all s ,

and T −1

s=1

T∑ t=1

T∑ | γ
N

(s,t)|≤ M ;

3. E(e
it
e

jt
)= τ

ij ,t
 with | τ

ij ,t
|≤| τ

ij
|  for some τ

ij
 and for all t ;

in addition, N −1

i=1

N∑ j=1

N∑ | τ
ij

|≤ M ;

4. E(e
it
e

js
)= τ

ij ,ts
 and 

  
(NT )−1

i=1

N∑ j=1

N∑ t=1

T∑ s=1

T∑ | τ
ij ,ts

|≤ M ;

5. for every (t,s) , E | N −1/2

i=1

N∑ [e
is
e

it
− E(e

is
e

it
)]|4≤ M .

Given Assumption 1, the remaining assumptions presented above are easily satisfi ed if the e
it

 are independent for all i  and t .
Assumptions 2 and 3 respectively allow for limited time-series and cross-section dependence in the idiosyncratic components. 
Heteroscedasticity in both dimensions is also allowed (Assumption 4). In addition the authors allow for some weak dependence 
between factors and the idiosyncratic errors, which is formalized by: 

   
E

1

N
n

1

T t=1

T

∑F
t
e

it
n 2

⎛

⎝
⎜

⎞

⎠
⎟ ≤ c.

Appendices. A. Bai and Ng (2002) assumptions for approximate factor 
structure 
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Although asymptotically equivalent, the IC  criteria do not have the same fi nite sample properties [see Bai and Ng (2002)]. We 
perform Monte Carlo simulations to assess the fi nite sample properties of the three information panel criteria given in (5). In 
particular, we are interested in cases of large N  but moderately large T .  As in Bai and Ng (2002), we simulate data from the 
following model 1: 

X
it

=
j=1

r

∑λ
ij
F

jt
+ θe

it
= c

it
+ θe

it
,  (13)

where the idiosyncratic errors are generated by the following equation in order to allow for serial and cross-section correlation: 

e
it

=ρe
it−1

+ ν
it
+

j≠0, j≠− J

J

∑ βν
i− jt

.  (14)

In this equation, ρ  and β  represent serial and cross-section correlation parameters, respectively, J  is the number of the 
cross-correlated idiosyncratic components with θ  being their variance.
The factors are T × r  matrices of N (0,1)  variables and the factor loading are N (0,1)  variables. Hence, the common 
component of X

it
, denoted by c

it
 , has variance r . Our model assumes that the idiosyncratic component has the same 

variance 2 as the common component (i.e., θ= r ). We set ρ=0.50 , β=0.20  and J =max[N / 20,10] .
We consider thirteen confi gurations of the data. The fi rst fi ve simulate plausible asset pricing applications with two years 
of monthly data (T =24)  for 100  to 300  series of asset returns. We then increase T  to 36  months. The last three 
confi gurations are more general and are used to recall the results obtained by Bai and Ng (2002). For each data confi guration, 

we use the procedure exposed in section 2 in order to estimate the number of factors  r  and repeat the exercice 1000  times. 
Table 3 shows the test results, averaged across 1000  simulations, for r =2  (columns 3  to 5 ) and r =3  (columns 6  to 
8 ). Three main remarks can be drawn.
 i)  The IC2  criteria outperforms (on average) IC1  and IC

3
;

 ii)  For small T  (T =24 ), the three criteria lose (on average) their precision, even when N  is large. For T =36 , they 
do better in inferring the number of common factors used to generate the data;
 
  iii)

 When  T  and  N  are both small, the criteria do not perform effi ciently in inferring the appropriate number of factors. For 
example, for N =30  and T =40  both sets of criteria overestimate r .

Table  3: Simulation results for IC criteria.

  r =2     r =3  

  N     T     
IC

1     
IC

2     
IC

3    
IC

1     
IC

2     
IC

3  
300  24  2,08  2,02  2,3  2,79  2,75  2,89 
260  24  2,59  2,31  3,56  2,82  2,75  2,88 
200  24  2,24  2,05  2,92  2,63  2,48  2,94 
150  24  3  2,48  4,68  2,86  2,52  3,81
100  24  4,26  3,42  6,2  3,56  2,8  5,55 

        
 300  36  2  2  2,02  3,26  3,1  3,97 
260  36  2  2  2,01  3,13  3  3,74 
200  36  2,6  2,29  4,19  2,98  2,89  3,45 
150  36  2,35  2,15  3,76  2,99  2,96  3,16 
100  36  3,33  2,66  5,31  4,1  3,32  6,34 

        
 200  60  2,27  2,07  4,52  3,26  3,06  5,48 
200  100  3,44  2,39  7,84  4,4  3,39  7,98 
30  40  1  1  1  1  1  1 

1. All computations are performed using Matlab. The programs used for Monte Carlo simulations and test statistic computations are available upon request.
2. Bai and Ng (2002) also performed simulations allowing for the variance of the idiosyncratic component to be larger than that of the common component and yield 

similar results for the fi nite sample properties of their criteria.
 

B. Determining the number of latent factors: 
Monte Carlo simulations
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We perform Monte Carlo simulations in order to asses the fi nite sample properties of the asymptotic tests NS( j )  and R2( j )  

using the same data confi gurations as in appendix B (T =24, 36  and 
  
N =100, 150, 200, 250, 300) .

We assume    Fkt
: N (0,1) , k =1,...,r  and    eit

: N (0,σ
e
2(i)) , where e

it
 is uncorrelated with 

 
e

jt  for 

  
i ≠ j , i, j =1, ..., N . The factor loadings are standard normal, i.e. λij

: N (0,1), j =1, ..., r, i =1,...,N . 

The data are generated as X
it

=λ
it
' F

t
+ e

it
. We assume that there are r =2  factors and that this is known. The data are standardized 

to have mean zero and unit variance prior to the estimation of the factors by the method of asymptotic principal components. The observed 

factors are generated as 
  
G

jt
= ʹδ

j
F

t
+ ε

jt
 where ʹδ

j
 is a   r × 1 vector of weights, and ε

jt
: σε( j )N (0,var( ʹδ

j
F

t
)) . As in 

Bai and Ng (2006), we test   m=7  observed variables parameterized as given in table 4:  

Table  4: Parameters for Gjt simulation.

J 1 2 3 4 5 6 7

1jδ  1 1 1 1 1 1 0 

  
δ

j2  1 0 0 1 0 1 0 

σε  0 0 0.2 0.2 2 2 1 

The fi rst two factors, G1t  and 
  
G

2t , are exact factors since σε =0 . Factors three to six are linear combinations of the two latent 

factors but are contaminated by errors. The variance of this error is small relative to the variations of the latent factors for 
  
G

3t  and 

  
G

4t
, but is large for 

  
G

5t  and G6t . Finally, G
7t

 is an irrelevant factor as it is simply a random variable 
  N (0,1) .

The Monte Carlo simulation results are reported in Table 5. The test statistics are averaged over 1000  simulations. The 
  NS( j )  

and 
  R

2( j )  statistics reinforce the previous result. When the observed factors are contaminated by errors, Table 5 shows that 
the higher the variance of this error, the worse is the effi ciency of the tests considered here. Finally, the test precision is higher 
for T =36  than for   T =24 .

Table  5: Simulation results: Matching the observed variables to latent factors

N  T  NS( j )  R2( j )  
N   T    NS( j )  R2( j )  

300 36 
  
G

1  0,009 0,991 300 24 
  
G

1   0,009  0,991 
300 36 

  
G

2  0,009 0,991 300 24 
  
G

2   0,009  0,991 
300 36 

  
G

3  0,085 0,923 300 24   
G

3   0,085  0,923 
300 36 

  
G

4  0,046 0,956 300 24 
  
G

4   0,046  0,956 
300 36 

  
G

5  20,338 0,163 300 24 G
5   33,421  0,188 

300 36 
  
G

6  5,697 0,246 300 24 G
6   8,64  0,262 

300 36 
  
G

7  567,107 0,057 300 24   
G

7   46,731  0,087 

C. Matching the latent factors with the observed variables: Monte Carlo 
simulations
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Table  5 (suite)

 N  T  NS( j )  R2( j )  
N  T  NS( j )  R2( j )  

 250  36 
  
G

1   0,011  0,99  250  24 
  
G

1   0,012  0,989 

250  36 G
2   0,011  0,989  250  24 G

2   0,011  0,989 

250  36 
  
G

3  
 0,087  0,92  250  24 

  
G

3  
 0,085  0,922 

250  36 
  
G

4   0,049  0,954  250  24 
  
G

4   0,049  0,954 

250  36 G
5  

 20,927  0,159  250  24 G
5  

 18,144  0,187 

250  36 
  
G

6  
 6,616  0,243  250  24 

  
G

6  
 29,687  0,267 

250  36 
  
G

7  
 128,404  0,059  250  24 

  
G

7  
 60,498  0,086 

 200  36 G
1   0,013  0,987  200  24 G

1   0,013  0,987 

200  36 
  
G

2   0,013  0,987  200  24 
  
G

2   0,014  0,986 

200  36 
  
G

3  
 0,089  0,919  200  24 

  
G

3  
 0,089  0,919 

200  36 G
4   0,052  0,951  200  24 G

4   0,052  0,951 

200  36 
  
G

5  
 18,9  0,163  200  24 

  
G

5  
 28,367  0,191 

200  36 G
6  

 5,554  0,24  200  24 G
6  

 6,084  0,269 

200  36 G
7  

 127,262  0,055  200  24 G
7  

 80,598  0,086 

 150  36 
  
G

1   0,018  0,982  150  24 
  
G

1   0,019  0,981 

150  36 G
2   0,017  0,983  150  24 G

2   0,02  0,981 

150  36 G
3  

 0,097  0,913  150  24 G
3  

 0,093  0,916 

150  36 
  
G

4   0,057  0,946  150  24 
  
G

4   0,057  0,947 

150  36 G
5  

 19,742  0,158  150  24 G
5  

 23,36  0,192 

150  36 
  
G

6  
 5,856  0,245  150  24 

  
G

6  
 5,701  0,266 

150  36 
  
G

7  
 97,851  0,059  150  24 

  
G

7  
 75,996  0,088 

 100  36 G
1   0,027  0,974  100  24 G

1   0,028  0,973 

100  36 
  
G

2   0,027  0,974  100  24 
  
G

2   0,029  0,972 

100  36 
  
G

3  
 0,105  0,905  100  24 

  
G

3  
 0,106  0,905 

100  36 G
4   0,066  0,938  100  24 G

4   0,067  0,938 

100  36 
  
G

5  
 18,603  0,154  100  24 

  
G

5  
 19,214  0,184 

100  36 G
6  

 21,352  0,234  100  24 G
6  

 7,83  0,26 

100  36 G
7  

 102,409  0,057  100  24 G
7  

 83,84  0,085 

C. (suite)
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Table  6: Fund repartition by strategy 
for the HFR Database in December 2005

Strategy Fund Number 

1 Convertible Arbitrage  109 

2 Distressed Securities  127 

3 Emerging Markets  269 

4 Equity Hedge  1232 

5 Equity Market Neutral  282 

6 Equity Non-Hedge  146 

7 Event-Driven  225 

8 Fixed Income  310 

9 Foreign Exchange  68 

10 Fund of Funds  2011 

11 Macro  277 

12 Managed Futures  337 

13 Market Timing  25 

14 Merger Arbitrage  46 

15 Relative Value Arbitrage  268 

16 Sector  279 

17 Short Selling  23 

       

 Total 6034 

D. Data description
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Table  7: Selection matrix (1)

S&P 500 SMB HML MOM CREDIT BOND CMDTY USD SPPa
1 1  1  1  1  1  0  1  0  1
2 1  1  1  1  1  0  1  0  1
3 1  1  1  1  1  0  1  0  1
4 1  1  1  1  0  0  1  0  1
5 1  1  1  1  0  0  1  0  1
6 1  1  1  1  0  0  0  0  1
7 1  1  1  1  0  0  0  0  1
8 1  1  1  1  0  0  1  0  1
9 1  1  1  1  0  0  1  0  1

10 1  1  1  1  0  0  1  0  1
11 1  1  1  1  0  0  1  0  1
12 1  1  1  1  0  0  0  0  1
13 1  1  1  1  0  0  0  0  1
14 1  1  1  1  0  0  0  0  1
15 1  1  1  1  0  0  0  0  1
16 1  1  1  1  0  0  1  0  1
17 1  1  1  1  1  0  1  0  1
18 1  1  1  1  1  0  1  0  1
19 1  1  1  1  1  0  0  1  1
20 1  1  1  1  1  0  0  0  1
21 1  1  1  1  1  0  0  0  1
22 1  1  1  1  1  0  0  0  1
23 1  1  1  1  1  0  0  0  1
24 1  1  1  1  1  0  1  0  1
25 1  1  1  1  1  0  1  0  1
26 1  1  1  1  1  0  1  0  1
27 1  1  1  1  1  0  1  0  1
28 1  1  1  1  1  0  1  0  1
29 1  1  1  1  1  0  1  0  1
30 1  1  1  1  1  0  1  0  1
31 1  1  1  1  1  0  1  0  1
32 1  1  1  1  1  0  1  0  1
33 1  1  1  1  1  0  1  0  1
34 1  1  1  1  1  0  1  0  1
35 1  1  1  1  1  0  1  0  1
36 1  1  1  1  1  0  1  0  1

E. Selection matrix for dynamic replication strategy
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Table  8: Selection matrix (2)

S&P 500 SMB HML MOM CREDIT BOND CMDTY USD SPPa
37 1  1  1  1  1  0  1  0  1
38 1  1  1  1  1  0  1  0  1
39 1  1  1  1  1  0  0  0  1
40 1  1  1  1  1  1  0  1  1
41 1  1  1  1  1  0  1  0  1
42 1  1  1  1  1  0  1  0  1
43 1  1  1  1  1  0  1  0  1
44 1  1  1  1  1  0  1  0  1
45 1  1  1  1  1  0  0  0  1
46 1  1  1  1  1  0  0  0  1
47 1  1  1  1  1  1  0  0  1
48 1  1  1  1  1  1  0  0  1
49 1  1  1  1  1  1  0  0  1
50 1  1  1  1  1  1  0  0  1
51 1  1  1  1  1  0  0  0  1
52 1  1  1  1  1  0  0  1  1
53 1  1  1  1  1  0  1  1  1
54 1  1  1  1  1  0  1  1  1
55 1  1  1  1  1  0  1  1  1
56 1  1  1  1  1  0  1  1  1
57 1  1  1  1  1  0  1  1  1
58 1  1  1  1  1  1  1  1  1
59 1  1  1  1  1  1  1  0  1
60 1  1  1  1  1  1  1  1  1
61 1  1  1  1  1  1  0  0  1
62 1  1  1  1  1  1  1  1  1
63 1  1  1  1  1  1  1  1  1
64 1  1  1  1  1  1  1  1  1
65 1  1  1  1  1  1  1  1  1
66 1  1  1  1  1  1  1  1  1
67 1  1  1  1  1  0  1  1  1
68 1  1  1  1  1  0  1  1  1
69 1  1  1  1  1  1  1  1  1
70 1  1  1  1  1  0  1  0  1
71 1  1  1  1  1  1  1  1  1
72 1  1  1  1  1  1  1  1  1

E. (suite)
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